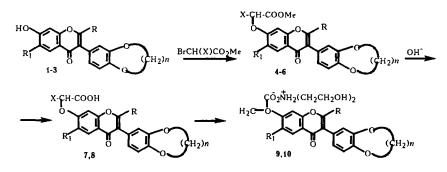
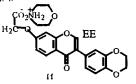
SYNTHETIC AND MODIFIED ISOFLAVONOIDS. XX. SYNTHESIS OF WATER-SOLUBLE SALTS OF DERIVATIVES OF 1,3-BENZODIOXOLE, 1,4-BENZODIOXANE, AND 1,5-BENZODIOXEPANE ANALOGS OF ISOFLAVONES


A. Aitmambetov,^a V. P. Khilya,^b and G. Ismailova^a

UDC 547.814.5


Water-soluble diethanolamine and morpholine salts of derivatives of 1,3-benzodioxole, 1,4-benzodioxane, and 1,5-benzodioxepane analogs of isoflavones have been synthesized.

Isoflavones containing hydroxy, alkoxy, glycosyloxy, or alkyl substituents in various positions of the chromone ring are widely distributed in the vegetable kingdom. Initially these compounds were synthesized predominantly with the aim of proving the structures of products isolated from natural raw material. At the present time, the synthesis of isoflavones is acquiring practical interest, in addition to that of purely scientific knowledge. It has been found that compounds of this series possess a broad spectrum of biological action. The biological action of isoflavones is being studied intensively and patented.

In the chemical literature, there are numerous patents and reports devoted to 7-alkoxycarbonylmethoxy- and 7carboxymethoxyisoflavones possessing various biological activities [2, 3]. In view of this, it appeared of interest to synthesize 7-alkoxycarbonylmethoxy derivatives of isoflavone analogs – 3-hetarylchromones – that we had obtained previously [4-8].

 $i - t0: a: R = R_1 = X = H; b: R = X = H; R_1 = Et; C: R = X = H; R_1 = Pr d:: R = Me, X = R_1 = H; b: R = Me, R_1 = Et; X = H; f: R = Me, R_1 = Pr, X = H; f: R = CF_3, R_1 = Et; X = H; f: R = CF_3, R_1 = Pr, X = H; f: R = R_1 = X = H; h: R = R_1 = X = H; h: R = R_1 = X = H; f: R = R_1 = R_1 = X = H; f: R = R_1 =$

a) KIEN, Karakalpak Division, Academy of Sciences of the Republic of Uzbekistan, 742000, Nukus, pr. Berdakha, 41. b) Kiev Taras Shevchenko University, Ukraine. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 306-312, May-June, 1998. Original article submitted February 4, 1998.

Com- pound	Yield, %	mp, °C	Empirical formula	Com- pound	Yield,	mp, °C	Empirical formula
				·	%		
4b	94	177-178	C ₂₁ H ₁₈ O ₇	7b	97	213-214	C ₂₀ H ₁₆ O ₇
4c	86	137-138	C ₂₂ H ₂₀ O ₇	7c	90	206-207	$C_{21}H_{18}O_7$
4e	98	122-123	C ₂₂ H ₂₀ O ₇	7e	97	202-203	$C_{21}H_{18}O_7$
4f	78	116-117	$C_{23}H_{22}O_7$	7f	91	112-113	C ₂₂ H ₂₀ O ₇
4h	80	153-154	C ₂₂ H ₁₇ F ₃ O ₇	8a	9 5	242-243	C ₁₉ H ₁₄ O ₇
4i	77	137-138	C ₂₃ H ₁₉ F ₃ O ₇	8b	92	213-214	C ₂₁ H ₁₈ O ₆
4p	73	123-124	$C_{24}H_{21}F_{3}O_{7}$	8c	89	222-223	C22H20O7
5a	100	187-188	C ₂₀ H ₁₆ O ₇	8d	90	217-218	C ₂₀ H ₁₆ O ₇
5b	84	156-157	C22H20O7	8e	98	238-239	C22H20O7
5c	96	121-122	C ₂₃ H ₂₂ O ₇	8f	97	203-204	C ₂₃ H ₂₂ O ₇
5d	95	174-175	C ₂₁ H ₁₈ O ₇	8i	86	128-130	C23H19F3O7
5e	75	151-152	C ₂₃ H ₂₂ O7	8j	82	220-221	C21H18O7
5f	86	142-143	C24H24O7	8q	82	232-233	C22H20O5
5g	91	159-160	C ₂₁ H ₁₅ F ₃ O ₇	9b	86	142-143	C24H27NO9
5h	79	177-178	C ₂₃ H ₁₉ F ₃ O ₇	9c	84	159-160	C ₂₅ H ₂₉ NO ₉
5i	94	147	C ₂₄ H ₂₁ F ₃ O ₇	9e	94	153-154 -	C ₂₅ H ₂₉ NO ₉
5j	99	172-173	C ₂₂ H ₂₀ O ₇	9f	77	135-137	C ₂₆ H ₃₁ NO ₉
5k	84	168-169	C24H24O7	10a	77	167-168	C23H25NO9
51	89	174-175	C ₂₁ H ₁₈ O ₇	10b	90	141-142	C25H29NO9
5m	90	144-145	C ₂₃ H ₂₂ O ₇	10c	75	143-145	C ₂₆ H ₃₁ NO ₉
5n	95	125-126	C ₂₃ H ₂₂ O ₇	10d	97	148-149	C24H27NO9
50	82	124-125	C24H24O7	10e	89	146-148	C ₂₆ H ₃₁ NO ₉
5p	87	121-122	C ₂₅ H ₂₃ FO ₇	10f	83	152-154	C ₂₇ H ₃₃ NO ₉
5q	71	110-111	C ₂₃ H ₂₂ O ₅	10i	50	158-160	C ₂₇ H ₃₀ NF ₃ O ₉
6d	77	144-145	C ₂₂ H ₂₀ O ₇	11	46	175-177	C ₂₅ H ₂₇ NO ₈
6r	50	100-101	C ₂₆ H ₂₈ O ₇				

TABLE 1. Characteristics of Compounds (4-11)

The 7-methoxycarbonylmethoxy and 7-(1-methoxycarbonylethoxy) derivatives of the 1,3-benzodioxole, 1,4benzodioxane, and 1,5-benzodioxepane analogs of isoflavones – the 3-hetarylchromones (4-6) – are formed readily and with high yields by boiling the corresponding 7-hydroxyisoflavone analogs (1-3) [4-8] with methyl bromoacetate and methyl β bromopropionate in acetone in the presence of potash.

To obtain water-soluble compounds from the 7-alkoxycarbonylmethoxy derivatives of isoflavone analogs (4, 5), they were subjected to alkaline hydrolysis to give the free acids (7, 8), from which the water-soluble diethanolamine and morpholine salts (9-11) were obtained. The isoflavone analogs (4-8) are colorless crystalline substances readily soluble in the usual organic solvents, while their diethanolamine and morpholine salts are soluble in water.

The structures and compositions of the compounds were confirmed by analytical and spectral results.

The results of analyses, constants, yields, and details of PMR spectra of compounds (4-11) are given in Tables 1-3.

The PMR spectra of compounds (4-8) lacked signals of the protons of phenolic hydroxyls, while each of them had the signal of a methoxy group at 3.8-3.9 ppm and, in the case of compounds (7, 8), that of the proton of a carboxy group in the 13.0-16.2 ppm region.

Thus, alkylation at the phenolic hydroxyls permits the formation of new, original compounds with specific fragments that, in a number of cases, are water-soluble, which is particularly important for pharmacological trials.

EXPERIMENTAL

The course of the reactions and the purity of the substances obtained were monitored by TLC on Silufol UV-254 plates. The eluent used was benzene – ethanol (9:1). PMR spectra were measured on a Bruker WP-100SY instrument in DMSO- d_6 or CDCl₃ with TMS as internal standard. The elementary analyses of all the compounds corresponded to the calculated values.

3-Hetaryl-7-methoxycarbonylmethoxychromones (4b, c, e, f, h, i, p; 5a-k; 6d, r) and the 3-Hetaryl-7-(1-methoxycarbonylethoxy)chromones (4p; 5l-q). To a hot solution of 15 mmole of the appropriate 7-hydroxyisoflavone analog in 200 ml of dry acetone were added 1.63 ml (17.9 mmole) of methyl monobromoacetate (or 17.9 mole of methyl β bromopropionate) and 6.23 g (45 mmole) of freshly calcined potash, and the mixture was boiled for 2-4.5 h. Then the inorganic deposit was filtered off, and the solvent was distilled off under water-pump vacuum. The residue was crystallized from ethanol (see Table 1), except for compounds (4e) and (5a), which were crystallized from aqueous ethanol.

Э.
n CDCI
(in C
ତ
4
ogs
nal
د د
ñ0
flav
iso
xy
stho
Ĩ
, no
ą
yca
XO
Alk
4
the
of
tra
Dec.
S
TABLE 2. PMR S
Ē.
N D
ABLE
AE
Г

	O(CH ₂)"O		80	5.92s	6.01s	5.97 s	5.92s	5.96s	5.98 s	6.01s		4.28 _{'S}	4.30 s	4.33s	4.31s	4.29 s	4.31s	4.30s	4.31s	4.30s	4.28s		4.28s
	Protons of the hetero residue		7	6.96 (m, H-4, H-6, H-7)	7.03 (m, H-4, H-6, H-7)	6.74 (m, H-4, H-6, H-7)	6.7 (m, H-4, H-6, H-7)	6.72 (m, H-4, H-6, H-7)	6.72 (m, H-4, H-6, H-7)	6.69 (b. 1H, H-4);	6.69 (d.d, 1H, H-6); 6.87 (d.1H, H-7)	6.84 (m, H-5, H-7, H-8)	7.04 (m, H-5, H-7, H-8)	. <u>E</u>	6.83 (m, H-5, H-7, H-8)	6.83 (m, H-5, H-7, H-8)	6.86 (m, H-5, H-7, H-8)	6.84 (m, H-5, H-7, H-8)	6.84 m, H-5, H-7, H-8)	6.78 (m, H-5, H-7, H-8)	6.74 (d, 1H, J=2Hz, H-5)	6.68 (d.d, 1H, J=8; 2.0Hz H-7) 6.90 (d, 1H, J=8Hz, H-8)	6.72 (d, 1H, J=2Hz, H-5) 6.67 (d.d. 1H, J=8; 2.0Hz, H-7) 6.90 (d, 1H, J=8Hz, H-8)
ppm (J, Hz)		H-8	9	6.64	6.70s	6.75s	6.64s	6.72s	6.72 s	6.72 [,] s		6.96d (2.5)	6.70 s	6.75 <u>.</u> 5	6.83,d (2.5)	6.68s	6.73 ₅	6.90d	6.78s	6.74s	7.18,d (2.5)		7.14s
PMR spectrum, ô, ppm (J, Hz)	ione ring	MeOOCH2CO-7 or MeOOC(Me)HCO-7	5	4.72; 3.78	4.79; 3.87	4.73; 3.81	4.75; 3.81	4.74; 3.83	4.77; 3.82	4.89q; 1.71d; 3.80s		4.74; 3.84	4.79; 3.85	4.82; 3.89	4.79; 3.86	4.80; 3.85	4.82; 3.87	4.80; 3.86	4.84; 3.88	4.81; 3.85	5.0; 3.73		5.05; 3.74
	Protons of the chromone ring	R-6	4	2.74q, 1.29t	2.80t, 1.75m, 1.0t	2.77q, 1.25t,	2.75t, 1.7m	2.799, 1.29т	2.75t, 1.71m, 0.96t	2.73t, 1.71m 0.96t		6.96 dd. (8.5; 2.5)	2.84q, 1.31 t	2.82t, 1.79m 1.03t	7.00 dd (8.5; 2.5)	2.81q, 1.29t	2.80t, 1.73m 0.99t	7.08 dd. (8.5; 2.5)	2.86q, 1.31 t	2.77t, 1.73m 0.98t	7.11 dd. (8.5; 2.5)		2.69q. 1.18t
		H-5	3	8.05s	8.07s	8.06s	8.03s	8.01s	7.97s	7.96s		8.23d (8.5)	8.09s	8.145	8.17d (8.5)	7.99s	8.04 ₆ s	8.17.d (8.5)	8.06s	8.0 <u>\$</u>	7.95d (8.5)		7.78s
		R-2	2	7.85s	7.90\$	2.26	2.25	1	1	ı		7.865	7.86s	7.96s	2.33s	2.30s	2.315	•	ı	ı	2.50q;	1.18t	2.69q; 1.18t
	Com-		1	4b	4	\$	4f	4	4i	4 0		5a	ŝ	ŝ	5d	Ş	5f	58	Sh	5	5;		Sk

TARLE 2 (continued)

TABL	nn) 7 3						
				PMR spectrum, 8, ppm (J, Hz)	ppin (J, Hz)		
Com- pound			Protons of the chromone ring	mone ring		Protons of the hetero residue	O(CH ₂) ⁿ O
	R-2	H-5	R-6	MeOOCH ₂ CO-7 or MeOOC(Me)HCO-7	H-8		
-	2	3	4	5	9	7	é8
51	7.89s	8.21d (8.5)	7.0 dd. (8.5; 2.5)	4.87q; 1.68d, 3.79s	6.78d (2.5)	6.94 (d, 1H, J=2Hz H-5) 7.06 (d.d, 1H, J=8; 2.0Hz H-7) 6.90 (d. 1H, J=8Hz H-8)	4.28s
Śm	2.29s	8.12d (8.5)	6.94.dd (8.5; 2.5)	4.85q: 1.67d, 4.24q; 1.27t	7.0Jd(2.5)	6.79(d, 1H, J=2Hz H-5) 6.72 (d.d, 1H, J=8, 2.0Hz H-7) 6.85(d. 1H, J=8Hz H-8)	4.29s
Sn	7.87	8.05s	2.76q, 1.27 t	4.86q; 1.69d, 3.77s	6.63 s	7.08(d. 1H, J=2Hz, H-5) 7.04 (d. d. 1H, J=8; 2.0Hz, H-7) 6.90(d. 1H, J=8Hz, H-8)	4.26s
50	7.87s	8.04s	2.72t, 1.690, 0.97 t	4.85q; 1.69d, 3.77s	6.62.s	7.09(d, 1H, J=2Hz, H-5) 7.04 (d.d, 1H, J=8, 2.0Hz, H-7) 6.91(d, 1H, J=8Hz H-8)	4.29s
Şp	ł	7.96s	2.74t, 1.64m, 0.96t	4.90q; 1.72d, 3.80 s	6.70s	6.76(d, 1H, J=2Hz, H-5) 6.72 (d.d. 1H, J=8, 2.0Hz, H-7) 6.92(d, 1H, J=8Hz H-8)	4.29s
54	2.51q, 1.18 t	7.93d (8.5)	7.06,dd. (8.5; 2.5)	5.289; 1.56d, 3.71s	7.09,d (2.5)	6.74(d, 1H, J=2Hz H-5) 6.88 (d.d, 1H, J=8; 2.0Hz, H-7) 6.90(d, 1H, J=8Hz, H-8)	4.28s
છ	2.29s	8.13d (8.5)	6.90d.d (8.5; 2.5)	4.74; 3.84	7.04d (2.5)	6.89(d, 1H, J=2Hz, H-6) 6.82 (d.d, 1H, J=8; 2Hz H-8) 7.04(d, 1H, J=8Hz H-9)	4.25 [.] t 2.20q
ور	2.55t. 1.66m 0.85t	7.78s	2.71q, 1.1 9 t	5.04; 3.74	7.1s	6.83 (d, 1H, J=2Hz H-6) 6.78 (d, d, 1H, J=8; 2Hz H-8) 7.02(d, 1H, J=8Hz H-9)	4.17t 2.14 q

6 06 (m H-4 H-6 H-7) 5 995			7.09 (m, H-4, H-6, H-7) 0.078	, e	6.88(d, 1H, J=8Hz, H-7)	6.80 (d, 1H, J=2 Hz, H-4) 6.04s	6.69 (d.d, 1H, J=8; 2Hz, H-6)	-7)	7.01 (m, H-5, H-7, H-8) 4.27s		H-5, H-7, H-8)	H-5, H-7, H-8)	Н-5, Н-7, Н-8)	H-5, H-7, H-8)		6.74 (d, 1H, J=2Hz, H-5) 4.28s	6.68 (d.d. 1H, J=8, 2Hz, H-7) e no / 1 (1 - ett- d.e)	6.30 (d, 111, J=0114, 11-0) 6.73 (d, 111, [=2H2, H-5) 4.28s	
	H-8	7.10 5	2 00' /	SCO. /		7.01s			7.11d (2.2)	7.15 _{'S}	7.19s	7.11,d(2.5)	7.09s	7.00s	7.32s	7.11d (2.5)		7 03d (2 5)	
0 residue	НООСН ₂ СО-7 ог НООС(Ме)НСО-7	4.88.5	4.948, 16.238	4.345		4.90s			4.915	4.96s	4.96s	4.93s	4.96s	4.90; 13.0	5.05s	4.89s		5 11. 1 57	
Protons of the hetero residue	R-6	2.73q. 1.221	2.74t, 1.70m, 0.93 t	2./49, 1.231		2.691. 1.65m 0.911			7.04d.d (8.3; 2.2)	2.77 g. 1.24 t	2.75t. 1.69m 0.97t	7.05d.d. (8.5: 2.5)	2.779. 1.25t	2.68t, 1.64m 0.91t	2.78t, 1.69m, 0.95t	7.06/d.d (8.5; 2.5)		7 034 4 (8 5· 3 5)	10-7 10-01 -WIRDON
	H-5	7.835	7.88s	7.83S		7 745			8.04 d (8.3)	7.89s	7.90s	7.95d	7.85 s	7.72.5	7.89 _' s	7.94d (8.5)		1004005	10.01 8000.1
	R-2	8.26is	8.36s	2.27S		2 26s			8.36s	8.355	8.37s	2.31s	2.315	2.26s	1	2.51a:	1.181	1 670.	1.181
Com- pound		92	7c	7e		Τf	Ξ		8a	8b	8c	84	96 96	96 18	80	8	•	80	5

3-Hetaryl-7-carboxymethylchromones (7b, c, e, f; 8a-f, i, j) and 2-Ethyl-3-(1,4-benzodioxan-6-yl)-7-(1-carboxymethylethoxy)chromone (8q). To a boiling suspension of 0.01 mole of the appropriate 7-(methoxycarbonylmethoxy)isoflavone analog (4, 5) or 2-ethyl-3-(1,4-benzodioxan-6-yl)-7-(1-carboxymethylethoxy)chromone (5q) in 50 ml of alcohol was added 8.0 ml of a 5% solution of caustic soda, and the mixture was boiled for 15-60 min. The end of the reaction was determined by TLC. The reaction mixture was neutralized with dilute hydrochloric acid (1:1). It was then diluted with water, and the precipitate that deposited was filtered off and crystallized from alcohol (see Table 1).

Diethanolamine Salts of the 3-Hetaryl-7-carboxymethoxychromones (9b, c, e, f; 10a-f, i). With stirring, 0.47 g of diethanolamine was added to a paste of 45 mmole of a 7-carboxymethoxyisoflavone analog in 1.9 ml of water heated to 70-75°C, and heating at this temperature was continued until the paste had been completely converted into a solution. Then 8.1 ml of isopropyl alcohol was added, the mixture was left in the refrigerator, and the precipitate that deposited was filtered off and washed with cold isopropyl alcohol. It was recrystallized from alcohol (see Table 1).

Morpholine Salt of 2-Ethyl-3-(1,4-benzodioxan-6-yl)-7-carboxymethoxychromone (11). This was obtained in an analogous way to compounds (9 and 10) from the 2-ethyl-7-carboxymethoxyisoflavone analog (8k) and morpholine (see Table 1).

REFERENCES

- 1. A. Aitmambetov, V. P. Khilya, and G. Berdimbetova, Khim. Prir. Soedin., 370 (1997).
- 2. M. Kitagawa, M. Tanaka, and S. Daiishi, US Patent No. 4841076, Benzopyran Derivatives.
- 3. P. De Re, A. Colleoni, and J. Setnikar, Farmaco, Ed. Sci., No. 13, 561 (1958); Chem. Abstr., 54, 517 (1960).
- 4. A. Aitmambetov and V. P. Khilya, Khim. Prir. Soedin., 669 (1993).
- 5. A. Aitmambetov and V. P. Khilya, Khim. Prir. Soedin., 674 (1993).
- 6. A. Aitmambetov, L. G. Grishko, and V. P. Khilya, Khim. Prir. Soedin., 808 (1993).
- 7. A. Aitmambetov, L. G. Grishko, and V. P. Khilya, Khim. Prir. Soedin., 814 (1993).
- 8. A. Aitmambetov and V. P. Khilya, Khim. Prir. Soedin., 820 (1993).